Kleines Rechenrätsel
2005-08-22 22:43
Anonymer User
Wir hatten ja schon mal so ein kleines Rätsel, wo die Missachtung einer Rechenregel in einem "Beweis" zu einem kuriosen Ergebnis führt. Hier ist ein anderes, welches ich gerade auf bash.org gesehen habe. Vielleicht möchte es sich ja jemand anschauen.
#522860 +(56)- [X]
<prepared>Theorem: All numbers are equal.
<prepared>Proof: Choose arbitrary a and b, and let t = a + b. Then
<prepared>a + b = t
<prepared>(a + b)(a - b) = t(a - b)
<prepared>a^2 - b^2 = ta - tb
<prepared>a^2 - ta = b^2 - tb
<prepared>a^2 - ta + (t^2)/4 = b^2 - tb + (t^2)/4
<prepared>(a - t/2)^2 = (b - t/2)^2
<prepared>a - t/2 = b - t/2
<prepared>a = b
<prepared>So all numbers are the same, and math is pointless.
#522860 +(56)- [X]
<prepared>Theorem: All numbers are equal.
<prepared>Proof: Choose arbitrary a and b, and let t = a + b. Then
<prepared>a + b = t
<prepared>(a + b)(a - b) = t(a - b)
<prepared>a^2 - b^2 = ta - tb
<prepared>a^2 - ta = b^2 - tb
<prepared>a^2 - ta + (t^2)/4 = b^2 - tb + (t^2)/4
<prepared>(a - t/2)^2 = (b - t/2)^2
<prepared>a - t/2 = b - t/2
<prepared>a = b
<prepared>So all numbers are the same, and math is pointless.